Brouwer’s Real Thesis on Bars

نویسنده

  • Wim Veldman
چکیده

L.E.J. Brouwer made a mistake in the formulation of his famous bar theorem, as was pointed out by S.C. Kleene. By repeating this mistake several times, Brouwer has caused confusion. We consider the assumption underlying his bar theorem, calling it Brouwer’s Thesis. This assumption is not refuted by Kleene’s example and we use it to obtain a conclusion different from Brouwer’s. Thus we come to support a view first expressed and defended by E. Martino and P. Giaretta in [Martino 1981]. We also indicate that Brouwer’s Thesis has many more applications than Brouwer dreamt of. Philosophia Scientiæ, Cahier spécial 6, 2006, 21–42.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primitive Recursive Bars Are Inductive

Using Martín Escardó’s « effectful forcing » technique, we demonstrate the constructive validity of Brouwer’s monotone Bar Theorem for any System T-definable bar. We have not assumed any non-constructive (Classical or Brouwerian) principles in this proof, and have carried out the entire development formally in the Agda proof assistant [13] for Martin-Löf ’s Constructive TypeTheory. In 2013, Mar...

متن کامل

Consistency of the minimalist foundation with Church thesis and Bar Induction

We consider a version of the minimalist foundation previously introduced to formalize predicative constructive mathematics. This foundation is equipped with two levels to meet the usual informal practice of developing mathematics in an extensional set theory (its extensional level) with the possibility of formalizing it in an intensional theory enjoying a proofs as programs semantics (its inten...

متن کامل

A Hypercomputation in Brouwer's Constructivism

In contrast to other constructivist schools, for Brouwer, the notion of “constructive object” is not restricted to be presented as ‘words’ in some finite alphabet of symbols, and choice sequences which are non-predetermined and unfinished objects are legitimate constructive objects. In this way, Brouwer’s constructivism goes beyond Turing computability. Further, in 1999, the term hypercomputati...

متن کامل

A Marriage of Brouwer’s Intuitionism and Hilbert’s Finitism I: Arithmetic

We investigate which part of Brouwer’s Intuitionistic Mathematics is finitistically justifiable or guaranteed in Hilbert’s Finitism, in the same way as similar investigations on Classical Mathematics (i.e., which part is equiconsistent with PRA or consistent provably in PRA) already done quite extensively in proof theory and reverse mathematics. While we already knew a contrast from the classic...

متن کامل

Constructive Proof of Brouwer’s Fixed Point Theorem for Sequentially Locally Non-constant and Uniformly Sequentially Continuous Functions

We present a constructive proof of Brouwer’s fixed point theorem for sequentially locally non-constant and uniformly sequentially continuous functions based on the existence of approximate fixed points. And we will show that our Brouwer’s fixed point theorem implies Sperner’s lemma for a simplex. Since the existence of approximate fixed points is derived from Sperner’s lemma, our Brouwer’s fixe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016